Go forth, and Multiply!

Maths Club

Elliott Tjia

Maths Club Go forth, and Multiply!

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

What is a number base?

< □ > < □ > < □ > < □ > < □ > .

æ

- What is a number base?
- What is our main number base?

<ロ> <部> < 部> < き> < き> <</p>

- What is a number base?
- What is our main number base?
 - ► Ten (Decimal)
 - Digits used: 0,1,2,3,4,5,6,7,8,9

・聞き ・ ほき・ ・ ほき

- What is a number base?
- What is our main number base?
 - ► Ten (Decimal)
 - Digits used: 0,1,2,3,4,5,6,7,8,9
- A number base is just a representation of the same information, and doesn't change the data itself.

One, Two, Many, Many-One,...

How did people count?

▲圖▶ ▲理▶ ▲理▶

One, Two, Many, Many-One,...

- How did people count?
 - Babylonians, base 60 counting system.
 - Mayans, base 20 today is 13.0.0.3.4

7 1	₹7 11	∜7 21	***7 31	41 41	** 7 51
77 2	477 12	₹{?? 22	***(17 32	4217 42	*** 17 52
ҮҮҮ з	₹₩ 13	∜₩ 23	***!??? 33	43	5 3
97 4	₹\$\$ 14	₩\$\$ 24	*** 💱 34	44	*** 🛱 5 4
W 5	∜ ∰ 15	₩ ₩ 25	₩₩ 35	₩ 45	*** 🛱 5 5
6	∢∰ 16	∜₩ 26	₩₩ 36	46	****** 56
8 7	17	**** 27	₩₩ 37	47	**** 5 7
8	18	₩₩ 28	₩₩ 38	48 48	* * * * 58
# 9	∢∰ 19	* # 2 9	*** 39	49	***# 59
∢ 10	{{ 20	₩ 30	4 0	** 50	

Do we use any non-base ten counting?

□ > < = > <

One, Two, Many, Many-One,...

- How did people count?
 - Babylonians, base 60 counting system.
 - Mayans, base 20 today is 13.0.0.3.4

7 1	₹7 11	4(7 21	***7 31	41 41	*** 7 51
77 2	12	477 22	***(17 32	4217 42	*** 17 52
₩ з	13	∜₩ 23	***!??? 33	43	44 111 53
87 4	₹27 14	₩\$\$7 24	*** 💱 34	44	* * * * 54
¥ 5	15	₩ ₩ 25	₩₩ 35	₩ 45	€€ 🛱 55
6	16	∜₩ 26	₩₩ 36	46	**** 75 6
7	17	₩₩ 27	₩₩ 37	47	* * * * 57
₩ 8	18	₩₩ 28	₩₩ 38	48 48	**** 5 8
# 9	∢∰ 19	∜∰ 29	₩₩ 39	49	***# 59
∢ 10	{{ 20	₩ 30	4 0	** 50	

Do we use any non-base ten counting?

Seconds in a minute, minutes in an hour, hours in a day

・ 戸 と ・ ヨ と ・ モ と ・

An On-off relationship with computers

How to Computers count?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

An On-off relationship with computers

- How to Computers count?
- Base 2 (Binary)

10001010101 001010111101010 01010100011010101010101 70707770777000707770007 101010111100010101001010101.01.1.1.1.0 707000707070707070707070707070 00001010110001010100100101011011 7000070707777070707070707 0777070707070007707070707 110001110001

Problem: Every base is base 10

▲□ ▶ ▲ □ ▶ ▲

3 x 3

- Problem: Every base is base 10
- Notation for bases 345

・日・ ・ヨ・・

∃ >

- Problem: Every base is base 10
- Notation for bases $34_5 = 19_{10}$

▲□ ▶ ▲ □ ▶ ▲

∃ >

- Problem: Every base is base 10
- ▶ Notation for bases 34₅= 19₁₀= 10011₂

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Addition and subtraction still work in the same fashion
- ▶ 33₇ 12₇ =

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 = の < @

- Addition and subtraction still work in the same fashion
- ▶ 33₇ 12₇=21₇
- ▶ $23_5 + 14_5 =$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

- Addition and subtraction still work in the same fashion
- ▶ 33₇ 12₇=21₇
- $> 23_5 + 14_5 = 42_5$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

- Addition and subtraction still work in the same fashion
- ▶ 33₇ 12₇=21₇
- ▶ $23_5 + 14_5 = 42_5$
- Question Sheet 1

- * @ * * 注 * * 注 * - 注

- Hexadecimal is base 16
- ▶ 10₁₀ =??₁₆

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Hexadecimal is base 16
- ▶ 10₁₀ =??₁₆
- Remembering that a base is defined by the number of unique digits used, base 16 can use the following digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Conversion between bases is easier if one base is an integer power of the other e.g. 16 = 2⁴

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Conversion between bases is easier if one base is an integer power of the other e.g. 16 = 2⁴

►
$$3_{16} = 11_2$$

• $A_{16} = 1010_2$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Conversion between bases is easier if one base is an integer power of the other e.g. 16 = 2⁴
- ► $3_{16} = 11_2$
- $A_{16} = 1010_2$
- ► $3A_{16} = 111010_2$

(4月) (日) (日) 日

- Classical Algorithm
 - Napier's bones
- Single Digit Additions, Multiplications, Shifts.

・ロン ・部 と ・ ヨ と ・ ヨ と …

- In base 2, a multiplication by 2 is equivalent to a shift.
 - Peasant Multiplication

(日本) (日本) (日本)

- In base 2, a multiplication by 2 is equivalent to a shift.
 - Peasant Multiplication
- Karatsuba Algorithm

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- In base 2, a multiplication by 2 is equivalent to a shift.
 - Peasant Multiplication
- Karatsuba Algorithm
- Question Sheet 2

・ 同 ト ・ ヨ ト ・ ヨ ト

- Base 8 is Octal
- Base 10 is Decimal

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Base 8 is Octal
- Base 10 is Decimal
- OCT 31=

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- Base 8 is Octal
- Base 10 is Decimal
- OCT 31=DEC 25